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Abstract
A liquid drop can be kept bouncing at the surface of a bath of the same
liquid for any length of time if the bath is kept oscillating vertically. Several
regimes can be observed. For a liquid of moderate viscosity, the bouncing of
the drop generates damped capillary waves with a wavelength corresponding
to the forcing frequency. Therefore when several identical drops are placed
on the oscillating surface, the interaction of their waves leads to the self-
organization of the drops with a 2D triangular lattice. Another remarkable
regime is observed when the forcing amplitude is increased close to the Faraday
instability threshold: the drop starts moving in the horizontal plane at a constant
velocity. We have studied the movement of one ‘walking drop’ as well as the
possible interactions of several of these particular drops placed on the surface of
the liquid, leading to their complex self-organization. These drops can collide
via their waves and in certain situations attract each other and start orbiting.

1. Introduction

In a previous article (Couder et al 2005), we showed that the coalescence of a drop deposited
on a bath of the same fluid could be inhibited by vertical oscillations. Normally, if a drop falls
on the surface of the same liquid, gravity makes it press upon the air film between the drop
itself and the surface. The attractive van der Waals force and then the surface tension bring the
two surfaces together, leading to the spreading of the drop into the liquid. We can inhibit this
phenomenon by oscillating the bath of liquid on which the drop is placed. When the amplitude
of the forcing is large enough, the drop lifts up from the surface periodically and the intermediate
air film is constantly renewed. This phenomenon, first observed in soap solutions (Walker
1978), has recently been studied in pure fluids (Couder et al 2005), and the major role played
by the intermediate air film was characterized. This paper is devoted to the self-organization
observed when several drops are simultaneously present on the fluid surface. In the limit of very
viscous fluids they attract and form dense clusters. For less viscous fluids the drops’ bouncing
generates capillary waves. Because of the interaction of these waves, static clusters are formed.
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All these experiments are performed on a plane interface. It is well known however that
when a bath of liquid is oscillated vertically, there is a threshold over which the free surface
becomes unstable and parametrically forced standing waves form. Faraday (1831) first char-
acterized this instability. It has been widely studied from an experimental (e.g. Ciliberto and
Gollub 1984, Douady and Fauve 1988) as well as a theoretical point of view (e.g. Benjamin and
Ursell 1954, Kumar and Tuckerman 1994). In our experimental situation, for large forcing am-
plitudes the bouncing becomes sub-harmonic so that the drops become local sources of Faraday
waves, even though we are still below the instability threshold. In this case, dynamical regimes
of self-organization are observed. Preliminary results were published in Couder et al (2005).

2. Experiment

The liquid chosen for this experiment is silicon oil because its surface is not sensitive to
surfactant effects. The bouncing regime can be observed for drops of various sizes (D < 3 mm)

and for a large range of oil viscosities (from 5 × 10−3 to 1 Pa s).
Several parameters define the system: f0 the forcing frequency, γm the maximum

acceleration of the oscillation, D the drop’s diameter, and the viscosity of the liquid µ. The
bouncing of large drops of high viscosity has been studied in Couder et al (2005). Small
drops of very viscous oil at low frequencies remain spherical during their bouncing motion
and the surface changes very little. With very viscous oils, µ > 100 × 10−3 Pa s, the waves
emitted by the drops are damped. If the drops are close enough, they will drift towards each
other, due to a classical attractive interaction of their menisci. The drops then form a compact
aggregate, with only an air film between them inhibiting their coalescence (figure 1(a)). When
the wavelength of the waves formed by the drops is approximately the same as the drops’
diameter, the aggregate starts to rotate (figure 1(b)). In this situation, at each bounce the drops
fall on the inner slope of the global trough formed in the interface by the bouncing aggregate.
This gives the drops a centripetal force which balances the centrifugal forces.

We can now investigate the situation for small drops (D < 1 mm) of silicon oils of weaker
viscosity (20 × 10−3 or 50 × 10−3 Pa s). Bouncing drops can be observed for frequencies
20 Hz < f0 < 200 Hz. For a forcing amplitude larger than the threshold γ C

m , a small drop can
be kept bouncing for an unlimited amount of time. In most of our experiments we will work
with a fluid of given viscosity at a fixed frequency. As the amplitude of the bath’s oscillations
is increased, drops of various sizes will behave very differently. Consequently we can draw
a phase diagram showing the different behaviour of a drop as a function of size and of the
acceleration (figure 2). Two thresholds set the limit of the region for which bouncing drops
exist. The lowest limit is the minimum acceleration γ C

m needed to inhibit the coalescence of the
drop. During the bouncing motion, the smaller drops (D < 1 mm) remain spherical whereas
the larger drops become oblate when pressed against the air film and return to sphericity when
they lift off the surface. This threshold γ C

m grows as ω2
0, with ω0 being the forcing pulsation,

for drops of a given size. For the smaller drops, we have the simple limit γ C
m ≈ g. The higher

limit corresponds to the Faraday instability threshold over which the drops bounce chaotically
on the wavy interface, this chaos usually leading to coalescence.

2.1. Simple bouncers

When the acceleration is increased, we have to differentiate the motion of smaller (D <

0.5 mm) and larger (0.5 mm < D < 1.1 mm) drops. Since the smaller drops’ size is much
smaller than the capillary length κ−1 = (σ/ρg)1/2, both the drop and the interface behave as
rigid bodies. We have filmed the drop’s vertical motion with a fast camera. Spatio-temporal
diagrams of the motion of the drop as well as its reflection in the oscillating bath’s surface can
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Figure 1. (a) Compact aggregate of seven drops of very viscous oil (µ = 500 × 10−3 Pa s,
f0 = 30 Hz, D = 2.2 mm). (b) Aggregate of seven drops of viscous oil rotating at 2 turns s−1

(µ = 100 × 10−3 Pa s, f0 = 70 Hz, γm/g = 5.8, D = 2.2 mm).

Figure 2. Phase diagram showing the drop’s various behaviour as a function of its diameter D
and of the forcing acceleration. The liquid used here is silicon oil of viscosity 50 × 10−3 Pa s
and the forcing frequency is f0 = 50 Hz. B corresponds to the simple bouncing region, PDB to
period doubling bouncing, PDC to the transition to chaos, Int. to an intermittent behaviour. W is
the region where the drops become walkers, just below the Faraday instability threshold.

thus be obtained. For increasing accelerations of the same drop they show successively the
simple bouncing, then the period doubling and transition to chaos. The bouncing is thus very
similar to that of a solid ball on a vibrating solid plate (Tufillaro and Albano 1986) and we
observe the same transition to chaos with a period doubling scenario.

When several identical bouncers coexist at the surface of the liquid, their waves interact. In
the regime of simple bouncing, when the drops are close enough, they slowly drift towards each
other until they reach a fixed distance d . Each drop is then a source of propagative capillary
waves. A steady regime is formed where each drop bounces with a forced periodicity, in the
same trough of the sum of the waves emitted by the two drops. This steady regime occurs
when the two drops are at a distance d slightly smaller than the wavelength λ0 of the forcing
frequency f0. If several drops are placed on the surface, the drops then form a cluster of drops
at this same distance d (figure 3(c)).

When one of the drops accidentally coalesces, the remaining drops rearrange themselves
to keep this same distance between them. The drops are then organized in a cluster of triangular
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Figure 3. (a) A cluster of three identical drops will organize themselves so as to bounce at the
distance λ0 when the forcing acceleration is γm/g = 2.5 (µ = 20 × 10−3 Pa s, f0 = 80 Hz,
D = 0.7 mm). (b) The same cluster of three drops will expend as we increase the forcing
acceleration to γm/g = 2.8 (µ = 20 × 10−3 Pa s, f0 = 80 Hz, D = 0.7 mm). (c) Seven
identical drops bouncing together and forming a cluster of triangular lattice (µ = 20 × 10−3 Pa s,
f0 = 56 Hz, D = 0.7 mm).

lattice (figure 3(a)), the exception being a cluster of six drops for which we observe a pentagon
with a central drop. The system is then frustrated and the distance between the drops is greater
than d . Nevertheless, this situation is very unstable, and one of the drops will tend to coalesce
to allow the remaining drops to recover the distance d from each other. If we increase the
forcing acceleration, the cluster of drops expands brutally (figure 3(b)). The drops have then
reached the period doubling regime and emit waves at both the forcing and half the forcing
frequency. Therefore the distance d for which a standing wave is formed between two drops is
no longer the forcing wavelength but approximately the Faraday wavelength. In this situation
the drops still organize themselves so that there is a standing wave between them.

The larger drops (0.5 mm < D < 1.1 mm) go through the same initial period doubling
when the forcing acceleration is increased. However, the drops deform during the collision
and the dissipation is larger. The spatio-temporal recordings show that the motion evolves
into a simple bouncing at half the forcing frequency. A remarkable transition then occurs: the
drop starts moving across the surface at a constant velocity. For simplicity, we shall call these
drops ‘walkers’.

2.2. Walkers

These drops’ motion is parametrically forced: it has the Faraday frequency fF = f0/2,
therefore the emitted wave has the wavelength λF usually observed in Faraday standing waves.
This phenomenon is only observed close to the Faraday instability threshold. When this
threshold is reached, the wave emitted by a walker propagates in the whole cell rapidly, letting
the well-known Faraday standing waves appear.

The spatio-temporal diagram shows that a walker is in contact with the surface during
approximately a fifth of a Faraday period. This is when the drop hits the surface, shaping a
trough that will grow and propagate. The wave propagates freely until the drop hits the surface
again. Each time the drop reaches the surface, a wave is emitted.

We have visualized the waves’ motion with a fast camera. The wave emitted after the drop
hits the surface is a propagative wave of modulated amplitude. The trough formed by the drop
as it evolves induces the formation of a protruding bulge at the centre. But the wave formed in
this experiment has a very specific motion: each time the drop hits the surface of the liquid at the
Faraday period, it modifies the wave’s shape from the previous bounce. Thus the wave cannot
be considered to be a simple propagative wave. The drop bounces again on the surface but on
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Figure 4. ((a), (b)) Walker filmed with a fast camera from top (µ = 20 × 10−3 Pa s, f0 = 80 Hz,
γm/g = 4.4, D = 0.7 mm). The walker falls on the slope of the wave formed at its previous
bounce. ((c), (d)) Walker filmed with a fast camera from side (µ = 50 × 10−3 Pa s, f0 = 50 Hz,
γm/g = 4.4, D = 0.8 mm).

Figure 5. Acceleration threshold γs for the Faraday instability as a function of the forcing frequency
for various oil viscosities (µ = 10 × 10−3, 20 × 10−3, 50 × 10−3 and 100 × 10−3 Pa s). Just
below this threshold, the areas in grey correspond to the walker regions.

the slope of this bump giving it a horizontal velocity but also shifting the shape of the trough that
should have been formed if the wave had been propagating naturally. This creates a Doppler
shifted wave: the wavelength is reduced ahead of the moving drop and increased behind it.
The waves on both sides of the drop have the Faraday wavelength (figure 4). The waves flatten
and amplify periodically, because the forcing acceleration opposes or increases gravity.

We have measured the acceleration threshold for the Faraday instability as a function of
the oil viscosity and the forcing frequency and observed that walkers only exist just below this
Faraday threshold and also only for a certain range of forcing accelerations (figure 5).
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In order for a drop to become a walker it has to jump high enough so that the periodicity
of its contact with the fluid is twice that of the forcing. For a given forcing we checked that
the walker’s velocity is constant. We have measured the walker’s velocity with the forcing
acceleration and shown that for small drops the transition to the walking state is a supercritical
bifurcation.

The drop’s behaviour in the horizontal plane, once averaged over a period 2π/ω of the
vertical motion, can be modelled by the following equation:

m d2x/dt2 = a sin((2πk/ω) dx/dt) − b dx/dt . (1)

The sine term is the impulsion which drives the horizontal motion. It is due to the bouncing
of the drop on the sloping surface of the fluid. (2πk/ω) dx/dt is the phase shift due to the
difference in velocity of the drop and the wave. The second term on the right-hand side
averages the viscous effects when the drop bounces on the surface of the liquid and shears
the intermediate air film. Given equation (1), the drop will start moving horizontally in any
direction when a is larger than b/(2πk/ω). As the acceleration is increased, the experimentally
observed transition from bouncing drops to walking drops is thus a supercritical transition.

A walker travels faster as the forcing acceleration is increased. Walkers of varying sizes
have been studied. Since big drops, when hitting the surface, form waves of larger amplitudes,
their velocity is larger. A walker’s velocity can vary from 5 to 20 mm s−1 depending on its
size and the forcing acceleration.

2.3. Interacting walkers

When several walkers coexist on the surface of the liquid, they interact. A large variety of
regimes can then be observed. For simplicity, we shall first consider two identical drops moving
in the cell. The emitted waves are then identical. Two fast walkers never collide directly but
veer off course. Due to their waves, they can either attract or repel each other. In some of the
attractive collisions there is capture and the two drops will start orbiting around their centre of
mass. When the drops are of the same size, they have the same orbit. We investigated all the
possible orbits and found that their diameters dorb

n can take a series of discrete values. We find
that these values are linked to the Faraday wavelength: they are of the type dorb

n = (n − ε)λF

when the two drops oscillate in phase and dorb
n = (n + 1/2 − ε)λF when the two drops oscillate

with opposite phases (the shortest possible diameter being for n = 0). Observation (figure 6)
shows that for these distances (because of the offset ε) each of the two walkers bounces on
the inner slope formed by the wave of the other. This is responsible for the existence of the
attractive force necessary for the orbiting motion.

The orbiting walkers’ velocities are approximately the same as the walkers’. When two
walkers of different sizes start to orbit, since the angular velocities are the same and the linear
velocities different, the fastest walker has the larger orbit. As a result, surprisingly the centre
of rotation is closer to the smaller drop.

3. Concluding remarks

Drops can be kept bouncing at the surface of the same liquid for unlimited times. As they
bounce, they can create waves at the surface of the liquid and thus become mobile wave sources.
We have explored two regimes leading to the formation of static or dynamical behaviour. The
latter corresponds to the emission of localized Faraday waves.

The existence of localized modes of the Faraday instability was already known without
local exciters but in cases where the instability is subcritical. They were observed in vibrated
sand where they were called oscillons (Umbanhowar et al 1996) or in very thin layers of very
viscous liquids (Lioubashevski et al 1996). These structures belonged to the family of the
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Figure 6. Identical walkers bound in the orbital mode n = 1 (D = 0.7 mm, µ = 20 × 10−3 Pa s,
f0 = 80 Hz, γm/g = 3.3).

localized states observed in a large variety of experiments all having subcritical transitions in
a 2D spatially extended system (e.g. Schäpers et al 2000, Liehr et al 2004). In such cases
domains of the bifurcated oscillating state coexist in an otherwise stable system. In our case the
situation is different: the Faraday instability is supercritical and localized waves are obtained
below the instability threshold by having local and mobile exciters, the bouncing drops. This
system appears as ideal for the investigation of the various modes of self-organization of
interacting wave sources.
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